UK Patent Application .. GB 2 404 040 .. A

(12)
(43) Date of A Publication 19.01.2005
(21) Application No: 0316669.1 (61) INTCL:
GO6F 17/30
(22) Date of Filing: 16.07.2003
(62) UK CL (Edition X ):
G4A AUDB
(71) Applicant(s):
Canon Kabushiki Kaisha (56) Documents Cited:
{Incorporated in Japan) EP 1228452 A0 EP 1199707 A2
30-2 3-Chome Shimomaruko, Ohta-ku, EP 1139332 A2 WO 2001/031627 A3
Tokyo, Japan
(58) Field of Search:
{72) Inventor(s): UK CL (Edition V ) G4A AUDB AUXX
Ljubomir Josifovski INT cL’? GOGF
Other: ON-LINE: EPODOC, WPI, JAPIO,
(74) Agent and/or Address for Service:
Beresford & Co
16 High Holborn, LONDON, WC1V 6BX,
United Kingdom
(64) Abstract Title: Lattice matching
(57) A system is described for matching lattices such as phoneme lattices generated by an automatic speech

recognition unit. The system can be used to retrieve files from a database by comparing a query lattice

with annotation lattices associated with the data files that can be retrieved, and by retrieving the data files

having an annotation lattice most similar to the query lattice.

o |55
CONTROL
| DISPLAY s
—>]
| p 3
|
61 K \ 4
| AUTOMATIC 53
7 SPEECH SEARCH [
RECOGNITION ENGINE

|
| UNIT
|
|

|
| PHONETIC
| | TRANSCRIPTION
| UNIT
| 3

3
N
|
: KEYBOARD
|
|

A 4

DATABASE

29

Fig. 4

Original Printed on Recycled Paper

vV 00 v0r ¢ 99



113

3

\

T

KEYBOARD

57
/ 55
CONTROL
DISPLAY R N
—>
51 I
AUTOMATIC |9
SPEECH DATA EILE
RECOGNITION
UNIT
PHONETIC - ”9
TRANSCRIPTION
UNIT DATABASE

Fig. 1



A E

swn

2/13

AN AN A A T A xE] N T A T R I T T
\ \\\ //// \\\\ \C ! //Il\\\ / \
N P N —— - /I \\ /7
~_ - vl T 40 M -
DT JHL 3900514



3/13

awn

v

/
O——O—-
\ /4e/
\

34N19Id

—p
!
!



4/13

57
v 55
CONTROL
DISPLAY SR
—
5< I
61

| AUTOMATIC 5

7 SPEECH SEARCH

RECOGNITION [~ ENGINE

UNIT

PHONETIC -
TRANSCRIPTION 29

UNIT DATABASE

N

KEYBOARD

Fig. 4



5/13

START

s

z

Y /53

GENERATE PHONEME AND
WORD DATA FOR INPUT QUERY

5
v

PERFORM WORD SEARCH IN
DATABASE USING WORDS IN
INPUT QUERY

s7

Fig. 5a

Fig. 5b

: o

DISPLAY RESULTS /
TO USER

s13

\ N

USING RESULTS OF WORD
SEARCH, PERFORM PHONEME
SEARCH OF SELECTED

PORTIONS OF DATABASE
s15
Y
Nle

RESULTS

CORRECT
?

Y

s17

DISPLAY RESULTS /
TO USER

RESULTS

CORRECT
?




6/13

s21

CARRY OUT PHONEME

DATABASE SEARCH
?

s23
/ l s27
PERFORM PHONEME SEARCH OF ‘//,
ENTIRE DATABASE DISPLAY RESULTS TO
USER

RESULTS

CORRECT
?
Y
Y REFINE
SEARCH
?
4

Fig. 5b



7113

FROM CONTROL UNIT TO CONTROL UNIT

l o1 T 83
a S
DYNAMIC PROGRAMMING TABLE SCORE

>
LATTICE SSM.PARISON PROCESSING UNIT

TO/FROM DATABASE Flg . 6

105 103-2

WOT 405

/th/ 0.3 105

/eh/ 0.3

109-3 111



8/13

INDEX SCORE J1 21
0(0) S,
1(6) s,
2 (10) s,
3 (15) s,
4 (23) S,
5(28) S,
o 3 Fig. 9

‘ Start )
s51
Initialise tables _/

: v

For every node (qnode) in the query lattice:
For every link (glink) from gnode in the query lattice:
For every node (anode) in the annotation lattice:
For every link (alink) from anode in the annotation lattice:
let ST be the table of glink's source node
let DT be the table of glink's destination node
let Sl be the table index of alink's source node
let DI be the table index of alink's destination node
propagate scores for current glink and current alink for
substitution in the query or annotation lattice
insertion in the query and annotation lattice
deletion in the annotation lattice
deletion in the query lattice

y

Inspect table associated with last | 55
query node to determine match score
and return score to control unit

|
D Fig. 10




121-ST
—

9/13

INDEX

SCORE

0 (0

J121—DT

1 (6

2 (10

3(15

4 (23

5(28

o|lojo|ojofo

6 (33

SCORE INDEX
-1e+38 0 (0)
~1e+38 1 (6)
1e+38 2 (10)
1e+38 3 (15)
-1e+38 4(23)
1e+38 5 (28)
1e+38 6 (33)

Fig.

11a

DT[1] = MAX(DT[1], ST[0] + log(1) + log(0.6) + log(P(insert /ih/)) + log(P(insert /k/))) = a

121-DT
/

11b

- 121-DT

121-ST
~N INDEX SCORE SCORE INDEX
0 (0) 0 -1e+38 0 (0)
1 (6) 0 ----1--.- a 1 (6)
2 (10) 0 -1e+38 2 (10)
3(15) 0 -1e+38 3(15)
4 (23) 0 -1e+38 4 (23)
5 (28) 0 -1e+38 5 (28)
6 (33) 0 -1e+38 6 (33)
Fig.
DT[1] = MAX(DT[1], ST[O] + log(1) + log(0.6) + log(P(/ih/ sub with /k/))) = b
121-ST
) INDEX SCORE SCORE INDEX
0 (0) 0 -1e+38 0 (0)
1 (6) 0 ----]--b> b 1 (6)
2 (10) 0 -1e+38 2 (10)
3(15) 0 -1e+38 3(15)
4 (23) 0 -1e+38 4 (23)
5 (28) 0 -1e+38 5 (28)
6 (33) 0 -1e+38 6 (33)

Fig.

11c



10/13

DT[1] = MAX(DT[1], ST[O] + log (1) + 10g(0.6) + log(P(/k/ sub with /ih/))) = ¢

121-ST
~Y INDEX SCORE SCORE INDEX | / 121-DT
0 (0) 0 -1e+38 0 (0)
1 (6) 0 _-I-—> c 1 (6)
2 (10) 0 -1e+38 2 (10)
3 (15) 0 1e+38 3 (15)
4(23) 0 -1e+38 4 (23)
5 (28) 0 -1e+38 5 (28)
6 (33) 0 -1e+38 6 (33)
Fig. 11d
DT{[0] = MAX(DTIO], ST[0] + log(0.6) + log(P(delete /k/))) =
121-ST 121-DT
] INDEX SCORE SCORE INDEX |/~
0 (0) 0 > d 0 (0)
1 (6) 0 c 1 (6)
2 (10) 0 -1e+38 2 (10)
3(15) 0 -1e+38 3 (15)
4 (23) 0 -1e+38 4 (23)
5 (28) 0 1e+38 5 (28)
6 (33) 0 -1e+38 6 (33)
Fig. 11e
ST[1] = MAX(ST[1], ST[O] + log(1) + log(P(delete /i/))) = e
121-ST
Y INDEX | SCORE scorRe | woex |/ 121-DT
0 (0) 0 : d 0 (0)
1 (6) e :—_—-' c 1 (6)
2(10) 0 -1e+38 2 (10)
3 (15) 0 -1e+38 3(15)
4(23) 0 -1e+38 4 (23)
5 (28) 0 -1e+38 5 (28)
6 (33) 0 -1e+38 6 (33)

Fig.

11f



1113

AME

"Ng N

tNg ZN

“Ng e-N
°s g
vm .V
’s ¢
’s 4
's L
0

eel mk”w xmwc_
1c —.\I

awi

d

Zl
5
sZl /{)\\|\ vzl

“
|
/l/\lx\f
8¢l

uonejouue
Aanb



12/13

SEARCH |
ENGINE

3" -
NETWORK
DATABASE INTERFACE V 69
UNIT
. J
68
ek
|
/57 /67 |
NETWORK |
DISPLAY [¢—1 | INTERFACE |
| UNIT |
|
|
I
I I
| /51 | /= 55 :
: 61 AUTOMATIC |
r SPEECH CONTROL
| » RECOGNITION > UNIT :
| UNIT
| |




13/13

60

______________________ |
|
|
/53 | AUTOMATIC o |

SEARCH SPEECH |~
ENGINE  [¢ RECOGNITION :
UNIT |
I
I |
A |
NETWORK | _gg |
DATABASE INTERFACE V|
UNIT |
|
|
|
______________________ J

68
59

N Y A
|
57 67 |
NETWORK :
DISPLAY |le—— | INTERFACE |
UNIT '
|
I 55 |
|
SPEECH |
ENCODING |——»|CONTROL UNIT |
UNIT '
|

— —— —



10

15

20

25

2404040

1

LATTICE MATCHING

The present invention relates to an apparatus and method
for matching lattices, such as phoneme lattices. The
invention can be used to search a database of data files
having associated annotation lattices, in response to a
user’s input query. The input query may be a voiced or

a typed query.

Databases of information are well known and suffer from
the problem of how to locate and retrieve the desired
information from the database quickly and efficiently.
Existing database séérch tools allow the user to search
the database using typed keywords. Whilst this is quick
and efficient, this type of searching is not suitable for
various kinds of databases, such as video or audio

databases.

Various proposals have been made for spoken document
retrieval systems which allow users to locate and
retrieve the desired information from the database using
a spoken' query. The user’s input query and the
annotation are usually generated by an automatic speech
recognition system which generates a lattice of phonemes
defining the phoneme alternatives hypothesised by the
automatic speech recognition unit for the query and the
annotation. The retrieval operation then relies on a

matching of the phonemes in the query lattice with the



10

15

20

25

2
phonemes in the annotation lattices to identify the data

file to be retrieved.

The applicant has proposed in their earlier international
application WO01/31627 a technique for matching a query
sequence of phonemes with one or more annotation
sequences of phonemes. The technique uses dynamic
programming to time align and match the phonemes in the
query sequence with the phonemes in the annotation
sequences. However, the technique proposed will only
work with canonical sequences of phonemes and if lattices
are to be matched then these must either be divided into
the different possible phoneme sequences represented by
the lattice or the lattice must be flattened and the
dynamic programming constraints adjusted to take into

account the phoneme alternatives.

According to one aspect, the present invention provides
a lattice comparison apparatus and method comprising
means for receiving first and second lattices of labels;
means for comparing the first lattice with the second
lattice by propagating a plurality of paths, each
representing a comparison between labels in the first
lattice and labels in the second lattice and each path
having a score representing the similarity of the
comparison; wherein during the path propagation, the
comparing means is operable to define a plurality of

storage areas, each storage area being associated with



10

15

20

25

3
a first lattice node and a respective node in the second
lattice and each being operable to store an accumulative
value representing the closeness of the comparison
between the labels in the first lattice up to the
associated lattice node and labels in the second lattice

up to the associated second lattice node.

According to another aspect, the present invention also
provides an apparatus and method for searching a database
comprising a plurality of information entries to identify
information to be retrieved therefrom, wherein each of
the information entries has an associated annotation
lattice and wherein the apparatus includes the above
lattice comparison apparatus for comparing a query
lattice representing an input query with each of the

annotation lattices.

According to another aspect, the present invention
provides a lattice comparison apparatus and method in
which first and second lattices are compared by
propagating a plurality of paths, each representing a
comparison between labels in the first lattice and labels
in the second lattice to identify the end of one or more
portions in the second lattice corresponding to the first
lattice, wherein the sequence length of the first lattice
is known and used to identify an approximate start of the
identified one or more portions in the second lattice

corresponding to the first lattice.



10

15

20

25

4
Exemplary embodiments of the present invention will now

be described with reference to the accompanying drawings

in which:

Figure 1 is a schematic block diagram illustrating a user
terminal which allows the annotation of a data file with
annotation data generated from a typed or voiced

annotation;

Figure 2 is a schematic diagram of phoneme and word
lattice annotation data which is generated from a typed

input by the user for annotating the data file;

Figure 3 is a schematic diagram of phoneme and word
lattice annotation data which is generated from a voiced

input by the user for annotating the data file;

Figure 4 1is a schematic block diagram of a user’s
terminal which allows the user to retrieve information

from the database by a typed or voice query;

Figure 5a is a flow diagram illustrating part of the flow

control of the user terminal shown in Figure 4;

Figure 5b is a flow diagram illustrating the remaining
part of the flow control of the user terminal shown in

Figure 4;



10

15

20

25

5
Figure 6 is a block diagram illustrating part of the
components of a search engine forming part of the user

terminal shown in Figure 4;

Figure 7 is a schematic diagram of a query phoneme

lattice;

Figure 8 is a schematic diagram of an annotation phoneme

lattice;

Figure 9 shows a table of scores which is kept for each
node within the query lattice during the matching of the

query lattice with an annotation lattice;

Figure 10 is a flow chart illustrating the main
processing steps involved in comparing the query lattice

with the annotation lattice;

Figure lla shows a source table and a destination table
which are updated during the comparison of the query

lattice with the annotation lattice;

Figure 1llb illustrates the updating of the destination
table to account for the insertion of phonemes in the

query lattice and the annotation lattice;

Figure llc illustrates the updating of the destination

table for a phoneme substitution in the annotation;



10

15

20

25

6

Figure 11d illustrates the updating of the destination

table for a phoneme substitution in the query;

Figure lle illustrates the updating of the destination
table to account for the deletion of a phoneme from the

annotation;

Figure 11f illustrates the updating of the source table

to account for the deletion of a phoneme from the query;

Figure 12 shows a time line for the query and a time line
for the annotation and illustrates the relationship
between the scores kept in the node table associated with
the last node in the query and the time line associated

with the annotation;

Figure 13 is a schematic block diagram illustrating the
form of an alternative user terminal which is operable
to retrieve a data file from a database located within

a remote server in response to an input voice query; and

Figure 14 illustrates another user terminal which allows
the user to retrieve data from a database located within

a remote server in response to an input voice query.

Embodiments of the present invention can be implemented
using dedicated hardware circuits, but the embodiment to

be described is implemented in computer software or code,



10

15

20

25

7
which is run in conjunction with processing hardware such
as a personal computer, workstation, photocopier,
facsimile machine, personal digital assistant (PDA),

cellular telephone or the like.

DATA FILE ANNOTATION

Figure 1 illustrates the form of a user terminal 59 which
allows a user to input typed or voiced annotation data
via the keyboard 3 and microphone 7 for annotating a data
file 91 which is to be stored in a database 29. In this
embodiment, the data file 91 comprises a two dimensional
image generated by, for example, a camera. The user
terminal 59 allows the user 39 to annotate the 2D image
with an appropriate annotation which can be used
subsequently for retrieving the 2D image from the
database 29. In this embodiment, a typed input is
converted, by the phonetic transcription unit 75, into
phoneme (or phoneme-like) and word lattice annotation
data which is passed to the control unit 55. Figure 2
illustrates the form of the phoneme and word lattice
annotation data generated for the typed input "picture
of the Taj Mahal". As shown in Figure 2, the phoneme and
word lattice is an acyclic directed graph with a single
entry point and a single exit point. It represents
different parses of the user's input. As shown, the
phonetic transcription unit 75 identifies a number of
different possible phoneme strings which correspond to

the typed input, from an internal phonetic dictionary



10

15

20

25

(not shown).

Similarly, a voiced input is converted by the automatic
speech recognition unit 51 into phoneme (or phoneme-1like)
and word lattice annotation data which is also passed to
the control unit 55. The automatic speech recognition
unit 51 generates this phoneme and word lattice
annotation data by (i) generating a phoneme lattice for
the input utterance; (ii) then identifying words within
the phoneme lattice; and (iii) finally by combining the
two. Figure 3 illustrates the form of the phoneme and
word lattice annotation data generated for the input
utterance "picture of the Taj Mahal". As shown, the
automatic speech recognition unit identifies a number of
different possible phoneme strings which correspond to
this input utterance. As shown in Figure 3, the words
which the automatic speech recognition unit 51 identifies
within the phoneme lattice are incorporated into the
phoneme lattice data structure. As shown for the example
phrase given above, the automatic speech recognition unit
51 identifies the words “picture", "of", "off", "the",

"Other“, utau’ "tar", "jamu, uahu' uhalll' nhan and llalll.

As shown in Figure 3, the phoneme and word lattice
generated by the automatic speech recognition unit 51 is
an acyclic directed graph with a single entry point and
a single exit point. It represents different parses of

the user's input annotation utterance. It is not simply



10

15

20

25

9 o
a sequence of words with alternatives, since each word
does not have to be replaced by a single alternative, one
word can be substituted for two or more words or
phonemes, and the whole structure can form a substitution
for one or more words or phonemes. Therefore, the
density of the data within the phoneme and word lattice
annotation data essentially remains linear throughout the
annotation data, rather than growing exponentially as in
the case of a system which generates the N-best word

lists for the audio annotation input.

In this embodiment, the annotation data generated by the
automatic speech recognition unit 51 or the phonetic
transcription unit 75 has the following general form:
HEADER
- flag if word if phoneme if mixed
- time index associating the location of
blocks of annotation data within memory to
a given time point.
- word set used (i.e. the dictionary)
- phoneme set used
- the language to which the vocabulary
pertains
- phoneme probability data
Block(i) i =0,1,2,.....
node N;j j=20,1,2,.....
- time offset of node from start of block

-~ phoneme 1links (k) k = 0,1,2.....



10

15

20

25

10
offset to node N; = N,-N; (N, is node to
which link K extends)
phoneme associated with link (k)
phoneme confidence
- word links (1) 1 =0,1,2,.....
offset to node N; = N; - N; (N; is node
to which link 1 extends)
word associated with link (1)

word confidence

The flag identifying if the annotation data is word
annotation data, phoneme annotation data or if it is
mixed is provided since not all the data files within the
database will include the combined phoneme and word
lattice annotation data discussed above, and in this
case, a different search strategy would be used to search

this annotation data.

In this embodiment, the annotation data is divided into
blocks of nodes in order to reduce the storage space
required to store the annotation data and to facilitate
the search to jump into the middle of the annotation data
for a given search. The header therefore includes a time
index which associates the location of the blocks of
annotation data within the memory to a given time offset
between the time of start and the time corresponding to
the block (eg the time corresponding to the beginning of

the block).



10

15

20

25

11
The header also includes data defining the word set used
(i.e. the dictionary), the phoneme set used and their
probabilities and the language to which the vocabulary
pertains. The header may also include details of the
automatic speech recognition system used to generate the
annotation data and any appropriate settings thereof
which were used during the generation of the annotation

data.

The blocks of annotation data then follow the header and
identify, for each node in the block, the time offset of
the node from the start of the block, the phoneme links
which connect that node to other nodes by phonemes and
word links which connect that node to other nodes by
words. Each phoneme link and word link identifies the
phoneme or word which is associated with the link and the
offset to the current node. For example, if node N5, is
linked to node Ns; by a phoneme link, then the offset to
node N;, is 5. As those skilled in the art will
appreciate, using an offset indication like this allows
the division of the continuous annotation data into
separate blocks. Additionally, in this embodiment, each
phoneme and word link includes a confidence weighting
output by the speech recognition system for the
corresponding phoneme or word, indicating the level of
confidence that the recognition system has in the phoneme
or word. Although not used in this embodiment, node

weightings may also be used which is indicative of the



10

15

20

25

12

confidence of arriving at the node.

In this embodiment, after the user has input the
annotation, the control unit 55 retrieves the appropriate
2D image file from the database 29 and appends the
generated phoneme and word annotation data to the data
file 91. Alternatively, the annotation data can be
stored separately from the data file 91 with an
appropriate pointer to the associated data file 91. The
augmented data file is then returned to the database 29.
During this annotating step, the control unit 55 is
operable to display the 2D image on the display 57, so
that the user can ensure that the annotation data is

associated with the correct data file 91.

As will be explained in more detail below, the use of
such phoneme and word lattice annotation data allows a
quick and efficient search of the database 29 to be
carried out, to identify and to retrieve a desired 2D
image data file stored therein. This can be achieved by
firstly searching in the database 29 using the word data
and, if this search fails to provide the required data
file, then performing a further search using the more
robust phoneme data. As those skilled in the art of
speech recognition will realise, use of phoneme data is
more robust because phonemes are dictionary independent
and allow the system to cope with out of vocabulary

words, such as names, places, foreign words etc. Use of



10

15

20

25

13
phoneme data is also capable of making the system future-
proof, since it allows data files which are placed into
the database 29 to be retrieved when the original
annotation was input by voice and the original automatic
speech recognition system did not understand the words

of the input annotation.

DATA FILE RETRIEVAL

Figure 4 is a block diagram illustrating the form of a
user terminal 59 which is used, in this embodiment, to
retrieve the annotated 2D images from the database 29.
This user terminal 59 may be, for example, a personal
computer, a hand-held device or the like. As shown, in
this embodiment, the user terminal 59 comprises the
database 29 of annotated 2D images, an automatic speech
recognition unit 51, a phonetic transcription unit 75,
a keyboard 3, a microphone 7, a search engine 53, a
control unit 55 and a display 57. In operation, the user
inputs either a voice query via the microphone 7 or a
typed query via the keyboard 3 and the query is processed
either by the automatic speech recognition unit 51 or by
the phonétic transcription unit 75, to generate
corresponding phoneme and word data. In this embodiment,
this data also takes the form of a phoneme and word
lattice, but this is not essential. This query phoneme
and word data is then input to the control unit 55 which
is operable to initiate an appropriate search of the

database 29 using the search engine 53. The results of



10

15

20

25

14
the search, generated by the search engine 53, are then
transmitted back to the control unit 55 which analyses
the search results and generates and displays appropriate
display data (such as the retrieved 2D image) to the user

via the display 57.

Figures 5a and 5b are flow diagrams which illustrate the
way in which the user terminal 59 operates in this
embodiment. In step sl, the user terminal 59 is in an
idle state and awaits an input query from the user 39.
Upon receipt of an input query, the phoneme and word data
for the input query is generated in step s3 by the
automatic speech recognition unit 51 or the phonetic
transcription unit 75. The control unit 55 then
instructs the search engine 53, in step s5, to perform
a search in the database 29 using the word data generated
from the input query. The word search employed in this
embodiment is the same as is currently being used in the
art for typed word searches, and will not be described
in more detail here. 1If in step s7, the control unit 55
identifies from the search results, that a match for the
user's input query has been found, then it outputs fhe

search results to the user via the display 57.

In this embodiment, the user terminal 59 then allows the
user to consider the search results and awaits the user's
confirmation as to whether or not the results correspond

to the information the user requires. If they are, then



10

15

20

25

15
the processing proceeds from step sll to the end of the
processing and the user terminal 59 returns to its idle
state and awaits the next input query. If, however, the
user indicates (by, for example, inputting an appropriate
voice command) that the search results do not correspond
to the desired information, then the processing proceeds
from step sll to step s13, where the search engine 53
performs a phoneme search of the database 29. However,
in this embodiment, the phoneme search performed in step
s13 is not of the whole database 29, since this could

take several hours depending on the size of the database.

Instead, the phoneme search performed in step sl13 uses
the results of the word search performed in step s5 to
identify one or more portions within the database which
may correspond to the user's input query. For example,
if the query comprises three words and the word search
only identifies one or two of the query words in the
annotation, then it performs a phoneme search of the
portions of the annotations surrounding the identified
word or words. The way in which the phoneme search
performed in step sl13 is carried out in this embodiment

will be described in more detail later.

After the phoneme search has been performed, the control
unit 55 identifies, in step s15, if a match has been
found. If a match has been found, then the processing

proceeds to step s17 where the control unit 55 causes the



10

15

20

25

16
search results to be displayed to the user on the display
57. Again, the system then awaits the user's
confirmation as to whether or not the search results
correspond to the desired information. If the results
are correct, then the processing passes from step s19 to
the end and the user terminal 59 returns to its idle
state and awaits the next input query. If however, the
user indicates that the search results do not correspond
to the desired information, then the processing proceeds
from step s19 to step s21, where the control unit 55 is
operable to ask the user, via the display 57, whether or
not a phoneme search should be performed of the whole
database 29. If in response to this query, the user
indicates that such a search should be performed, then
the processing proceeds to step s23 where the search
engine performs a phoneme search of the entire database

29.

On completion of this search, the control unit 55
identifies, in step s25, whether or not a match for the
user's input query has been found. If a match is found,
then the processing proceeds to ’step s27 where the
control unit 55 causes the search results to be displayed
to the user on the display 57. If the search results are
correct, then the processing proceeds from step s29 to
the end of the processing and the user terminal 59
returns to its idle state and awaits the next input

query. If, on the other hand, the user indicates that



10

15

20

25

17
the search results still do not correspond to the desired
information, then the processing passes to step s31 where
the control unit 55 queries the user, via the display 57,
whether or not the user wishes to redefine or amend the
search query. If the user does wish to redefine or amend
the search query, then the processing returns to step s3
where the user's subsequent input query is processed in
a similar manner. If the search is not to be redefined
or amended, then the search results and the user's
initial input query are discarded and the user terminal
59 returns to its idle state and awaits the next input

query.

A general description has been given above of the way in
which a search is carried out in this embodiment by the
user terminal 59. A more detailed description will now
be given of the way in which the search engine 53 carries

out the above mentioned phoneme searches.

Phoneme Lattice Search

As those skilled in the art will appreciate from the
description of Figures 4 and 5, in this embodiment, the
annotation phoneme data and the query phoneme data may
both be derived either from text or from speech.

Therefore, there are four situations to consider:

i) both the annotation and the query are generated

from text;



10

15

20

25

18
ii) the annotation is generated from text and the query
is generated from speech;
i1ii) the annotation is generated from speech and the
query is generated from text; and
iv) both the query and annotation are generated from

speech.

In this embodiment, the search engine 53 uses a dynamic
programming comparison technique which allows for the
insertion and deletion of phonemes from the query and/or
the annotation, during the comparison of the query
phoneme lattice with the annotation phoneme lattice.
However, in the first situation when both the query and
the annotation are generated from text, there is in
general no need to consider insertion and deletions and
the search engine compares the query with the annotation
using a simple boolean comparison of the query text and
the annotation text. In the second situation, the
annotation is taken to be correct and the search engine
53 allows for the insertion and deletion of phonemes in
the query in order to find the best alignment between the
two. The third situation mentioned above is similar to
the second situation except the sequence of query
phonemes is taken to be correct and the search engine
only allows for the insertion and deletion of phonemes
in the annotation relative to the query. Finally, in the
fourth situation, when both the annotation and the query

are generated from speech, both phoneme lattices can have



10

15

20

25

19

insertions and deletions.

As those skilled in the art will appreciate, the second
and third situations mentioned above can be treated as
a simplified form of the fourth situation since text can
be treated as a simplified lattice with no or few
alternatives. The following description will therefore
concentrate on the fourth situation discussed above where
the query phoneme lattice must be compared with the

annotation phoneme lattices.

As discussed above with reference to Figure 5, there are
two different types of phoneme searches which can be
carried out. The first is when the results from the word
search are used to identify portions of the annotations
against which a part of the query lattice is to be
matched. The second is when the entire query is to be
compared with different parts of the different
annotations in order to identify the annotations that
contain (in one or more places) the query. As will be
described in more detail below, the following lattice
matching technique can be used iﬁ both cases to yield the

appropriate comparison result.

Figure 6 is a block diagram illustrating the main
components forming part of the search engine 53 shown in
Figure 4 that are used, in this embodiment, to perform

the phoneme searches. As shown, the search engine 53



10

15

20

25

20
includes a dynamic programming (DP) lattice comparison
unit 81 and a table score processing unit 83. The DP
lattice comparison unit 81 receives the query phoneme
lattice from the control unit 55 which it compares using
a dynamic programming technique with a current annotation
lattice retrieved from the database 29. The result of
this comparison is a table of scores representing the
similarity of the query lattice with the annotation
lattice for different ending points in the annotation
lattice. The table of scores is then passed to the table
score processing unit 83 which processes the scores in
the table to identify a score representing the similarity
between the query lattice and the annotation lattice
which it returns to the control unit 55. A more detailed
discussion of the operation of the DP lattice comparison
unit 81 and the table score processing unit 83 will now

be given with reference to Figures 7 to 12.

Figure 7 illustrates an example query phoneme lattice 101
having five nodes 103-1 to 103-5, each of which
represents a point in time at which a phoneme begins or
ends within the query. This timing information' is
represented by the number contained within the node 103.
As shown in Figure 7, the nodes 103 are connected
together by one or more phoneme links 105 which identify
the phoneme (and it’s probability of occurring) that was
recognised as being uttered between the corresponding two

node time points.



10

15

20

25

21
Figure 8 schematically illustrates an annotation phoneme
lattice 107 which has a similar form to the query phoneme
lattice 101 except that it is usually longer. As shown,
the annotation phoneme lattice 107 includes a number of
nodes 109-1 to 109-8 each representing a time point
within the annotation at which a phoneme begins or ends.
As with the query phoneme lattice 101, the annotation
phoneme lattice 107 identifies the time points that are
associated with the nodes by the numbers within the nodes
109. The annotation phoneme lattice 107 also has
phoneme links connecting the nodes 109 in the lattice,
with each phoneme link having an associated phoneme and

probability of occurrence.

The DP lattice comparison unit 81 compares the phonemes
in the phoneme lattice 101 with the phonemes in the
annotation lattice 107 to determine a score representing
the similarity between the two phoneme lattices. It does
this by simultaneously propagating a plurality of
dynamic programming paths, each of which represents a
possible matching between part of the query lattice 101
and part of the annotation lattice 107. | During the
propagation, the scores associated with the dynamic
programming paths are compared and only the paths having
the best scores are propagated further. However, in the
general case since the query lattice 101 may be matched
with any part of the annotation lattice 107, the

comparison can only be made on dynamic programming paths



10

15

20

25

22

which have seen the same part of the annotation lattice

107.

In order to simplify the comparison, in this embodiment,
all of the possible dynamic programming paths have the
same start time which is fixed to the first time point
(node) in the query lattice. Therefore, all of the
dynamic programming paths which end at the same time
point (node) in the annotation lattice 107 can be
compared (and all but the best discarded) during the
dynamic programming path propagation. The result of this
simplification is that at the end of the comparison, the
start time of the best match will not be known. However,
since the approximate duration of the query is known and
since the end time of the best match will be known, the
duration of the query can be used to derive an
approximate start time of the match within the annotation
lattice 107. This simplification significantly speeds
up the comparison process, as the number of dynamic
programming paths that are tracked is an order of

magnitude smaller than without this simplification.

In order to keep track of all the different dynamic
programming paths, each node in the query phoneme lattice
101 has a table of scores associated with it. The table
has as many entries as there are distinct time points in
the annotation phoneme lattice. The table used for the

annotation shown in Figure 8 is shown in Figure 9 and is



10

15

20

25

23
referenced by reference numeral 121. As shown, the table
121 has seven entries which are indexed "0" through to
"6". Each of the indices corresponds to one of the time
points in the annotation lattice 107. Since there are
two nodes (109 - 3 and 109 - 4) which correspond to the
same time point, there is one less entry in the table 121
than there are nodes in the annotation lattice 107. The
i** element in the table for query node j stores the
score for the dynamic programming path ending at the jt
node in the query lattice 101 and at the it time point
in the annotation lattice 107, which score represents the
cumulative score for the match between the portion of the
query ending at node j and the portion of the annotation

ending at the i*" time point.

During the DP comparison, the DP lattice comparison unit
81 propagates the paths in accordance with the phoneme
links leaving the appropriate query and annotation nodes
and updates the appropriate scores in the node tables
121. When propagating the scores over a phoneme link in
the query lattice 101 and the annotation lattice 107, the
lattice comparison unit 81 considers the foilowing

possibilities:

i) that both the query phoneme and the annotation
phoneme were inserted;
ii) that the annotation phoneme was substituted by

the query phoneme in the query;



10

15

20

25

24
iii) that the query phoneme was substituted by the
annotation phoneme in the annotation;
iv) that the query phoneme was deleted from the
annotation; and that
v) the annotation phoneme was deleted from the

query.

In order to apply different scores to these different
possibilities, the dynamic programming comparison unit
81 has pre-stored insertion, deletion and substitution
(decoding) probabilities for all of the phonemes known
to the system (referred to below as confusion
statistics). These probabilities are determined in
advance during a training routine in which a large amount
of known speech is processed. The way in which these
pre-stored probabilities are determined will be described
later. In addition to wusing these pre-stored
probabilities, the DP comparison unit 81 uses the
probability associated with each of the phonemes in the
phoneme lattices 101 and 107. Therefore, in this
embodiment, the DP lattice comparison unit 81 calculates
the following score updates for the above five
possibilities when comparing query phoneme W having
probability X with annotation phoneme Y having

probability 2Z:



10

15

20

25

log(X) +1log(2Z) +log[P(W inserted) ]

+log[P(Y inserted)] (1)
log(X)+log(Z)+log[P(I’substituted.by W) ] (2)
log(X)+log(Z)+log[P(W’substituted‘by Y) ] (3)

log(Z) +1log[P(W deleted) ] (4)
log(X) +1log[P(Y deleted) ] (5)

However, before the scores can be propagated during the
dynamic programming comparison, the node tables 121 must
be initialised. 1In this embodiment, log scores are used
and therefore, the entries in all of the node tables 121
except the node table 121-1 for the first query node 103-
1 are set to the value -1 x 103, to ensure that these
scores will not win any comparison during the path
propagation; and the entries in the node table 121-1
associated with the first node 103-1 of the query are
initialised to zero. This initialisation of the node
tables 121 is performed in step s51 shown in the flow

chart of Figure 10.

As shown in step s53, the dynamic programming lattice



10

15

20

25

26
comparison unit 81 then processes each of the nodes 103
in the query lattice 101 in turn starting with the first

query node 103-1.

The processing carried out in step s53 will now be
described with reference to Figure 11 for the /k/ phoneme
link in the query lattice 101 extending between query
node 103-1 and query node 103-2 and the /ih/ phoneme link
in the annotation lattice 107 extending between
annotation nodes 109-1 and 109-2. As shown in step s53,
the DP lattice comparison unit 81 defines the node table
121 associated with source query node 103-1 to be the
source table (ST) and defines the node table 121
associated with the destination query node 103-2 to be
the destination table (DT). The DP lattice comparison
unit 81 also defines the source index value (SI) as the
node table index value corresponding to the source
annotation node 109-1 and defines the destination index
value (DI) as the node table index value corresponding
to the destination annotation node 109-2. Therefore, for
the current query and annotation links (representing
phonemes /k/ and /ih/ respectively) being considered in
this example, SI has the value "0" and DI has the value
"1l". The DP lattice comparison unit 81 then considers
each of the five possibilities discussed above and
updates the appropriate entries in the source and

destination tables.



10

15

20

25

27
Figure 1lla shows the source table 121-ST and the
destination table 121-DT. As discussed above, for the
current phonemes being considered, the source table is
the node table 121-1 corresponding to the first query
node 103-1, and therefore it’s entries will all initially
be set to "zero"; and the destination table is the node
table 121-1 corresponding to the second query node 103-2,
and therefore it’s entries will initially be set at -1

x 1038,

As discussed above, the first possibility that the DP
lattice comparison unit 81 considers is that both the
current query phoneme (/k/) and the current annotation
phoneme (/ih/) have been inserted into the respective
lattices. 1In this case, the DP lattice comparison unit
81 calculates the score update given in equation (1)
above and accumulates this with the score in the source
table pointed to by the source index value (SI). This
updated score is then propagated by comparing it with the
existing score in the destination table indexed by the
current destination index value (DI). If the updated
score propagated from the source table is greater than
the appropriate score in the destination table, then the
score in the destination table is replaced with the
updated score. This calculation (performed by the
lattice comparison unit 81) is shown in Figure 11b, where
DT[1]) is the score in the destination table pointed to

by the current destination index value (DI) and ST[0] is



10

15

20

25

28
the score in the‘source table pointed to by the current
source index value (SI). As illustrated in Figure 1llb,
the result of the updating and comparison (a) is then
written into the appropriate entry in the destination

table 121-DT.

The DP lattice comparison unit 81 then considers the
possibility that the current annotation phoneme was
substituted by the current query phoneme in the query.
It does this by calculating the score update given in
equation (2) above and accumulating that update with the
score from the source table pointed to by the source
index value. This updated score is then again propagated
by comparing it with the score in the destination table
pointed to by the destination index value, and
overwriting that score if the updated score is greater.
The calculation performed in this case is shown in Figure
llc which also illustrates the entries in the source and

destination tables which are updated and compared.

The DP lattice comparison unit 81 then considers the
possibility that +the current -query phoneme was
substituted by the current annotation phoneme in the
annotation. It does this by calculating the score update
given in equation (3) above and accumulating that update
with the score from the source table pointed to by the
source index value. This updated score is then again

propagated by comparing it with the score in the



10

15

20

25

29
destination table pointed to by the destination index
value, and overwriting that score if the updated score
is greater. The calculation performed by the DP lattice
comparison unit 81 in this case is shown in Figure 11d
which also illustrates the entries in the source and

destination tables which are updated and compared.

The DP lattice comparison unit 81 then considers the
possibility that the current query phoneme was deleted
from the annotation. In this case, the DP lattice
comparison unit 81 calculates the score update given in
equation (4) above which it then accumulates to the score
in the source table pointed to by the source index value.
The DP lattice comparison unit 81 then propagates the
updated score by comparing it with the appropriate entry
in the destination table 121-DT. However, in this case,
the appropriate entry is not the entry pointed to by the
destination index value (DI) since in this case, the
current query phoneme was considered to have been deleted
from the annotation. Therefore, in this case and as
shown in Figure 1lle, the DP lattice comparison unit 81
compares the updated score with the score in the
destination table 121-DT pointed to by the source index
value (SI) and replaces it with the updated score if the

updated score is greater.

Finally, the DP lattice comparison unit 81 considers the

possibility that the annotation phoneme was deleted from



10

15

20

25

30
the query. 1In this case, the DP lattice comparison unit
81 calculates the score update given in equation (5)
above which it accumulates with the score in the source
table pointed to by the source index value. The DP
lattice comparison unit 81 then propagates the updated
score. However, in this case, since the annotation
phoneme has been deleted from the query and as shown in
Figure 11f, the DP lattice comparison unit 81 propagates
the updated score by comparing it with the score in the
source table pointed to by the destination index value
and replaces it with the updated score if the updated

score is greater.

Once the DP lattice comparison unit 81 has updated and
propagated the scores in the above way for all of the
links and nodes in the query and annotation lattices, the
DP lattice comparison unit 81 outputs the node table 121
-5 associated with the final node 103-5 in the query to
the table score processing unit 83. The table score
processing unit 83 then inspects the table to determine
a score representing the similarity between the query
phoneme lattice and the annotation phoneme lattice which
it passes back to the control unit 55. As those skilled
in the art will appreciate, the it" score in the node
table 103-5 passed to the table score processing unit 83
holds the score representing the similarity between the
entire query lattice and the portion of the annotation

lattice ending at the i** time point in the annotation.



10

15

20

25

31
For example, the score in the final node table 103-5 at
index value 3 (corresponding to annotation node 109-5)
represents the score for the similarity between the
entire query lattice and the portion of the annotation

lattice ending at annotation node 109-5.

As discussed above, there are two different types of
phoneme searches which are carried out in this
embodiment. The first is when the results of the word
search are used to identify portions of the annotations
against which at least a part of the query lattice is to
be matched. 1In this case, the entire part of the query
lattice is aligned and matched individually with the
relevant portions of the annotation lattice. Therefore,
in this case, the table score processing unit 83
determines the appropriate score for each portion from
the received node table 121, by retrieving the score
associated with the last node in the annotation lattice,

which it passes back to the control unit 55.

The second type of search is where the entire query is
to be compared with different parts of a longer
annotation in order to identify places in the annotation
that contain the query. 1In this case, the table score
processing unit 83 compares each of the scores in the
received node table with a predetermined threshold value
and identifies the locations at which the query appears

in the annotation by determining which of the scores in



10

15

20

25

32
the table are greater than the threshold value. For this
second type of search, the table score processing unit
83 also determines an approximate start time for where
the query appears in the annotation. The way in which
the table score processing unit 83 achieves this in this

embodiment is illustrated in Figure 12.

In particular, Figure 12 illustrates two time lines - a
first time line 122 corresponding to the query and a
second longer time 1line 124 corresponding to the
annotation. The entire query is represented between the
two vertical marks 126 and 128 on the time line 122 and
has a duration t;. Figure 12 also illustrates the node
table 121 for the last node in the query output by the
DP lattice comparison unit 81. As illustrated by the
marks along the annotation time line 124 and the arrows
coming from the different elements within the node table
121, each score represents the similarity between the
entire query lattice and the portion of the annotation
ending at the annotation node corresponding to that entry
in the node table 121. Figure 12 also illustrates by the
bold arrow 123 that score S,; is better than the ébove
threshold value and therefore, the table score processing
unit 83 determines that the portion of the annotation
ending at the corresponding node in the annotation
(represented by the mark 125) contains the current query.
The table score processing unit 83 then determines an

approximate start time (represented by mark 127) of the



L 2N

10

15

20

25

33
query within the annotation by subtracting the known
query duration (t,) from the time point of the annotation
node represented by the mark 125. The table score
processing unit 83 then returns the score and the

identified start and end times to the control unit 55.

TRAINING

In the above embodiment, the system uses 1892
substitution/deletion probabilities and 43 insertion
probabilities which were used to score the dynamic
programming paths in the phoneme matching operation. 1In
this embodiment, these probabilities are determined in
advance during a training session and are stored in a
memory (not shown). In particular, during this training
session, a speech recognition system is used to provide
a phoneme decoding of speech in two ways. In the first
way, the speech recognition system is provided with both
the speech and the actual words which are spoken. The
speech recognition unit can therefore use this
information to generate a canonical phoneme sequence of
the spoken words to obtain an ideal decoding of the
speech. The speech recognition system is then used to
decode the same speech, but this time without knowledge
of the actual words spoken (referred to hereinafter as
the free decoding). The phoneme sequence generated from
the free decoding will differ from the canonical phoneme

sequence in the following ways:



10

15

20

25

34

i) the free decoding may make mistakes and insert
phonemes into the decoding which are not present in
the canonical sequence or, alternatively, omit
phonemes in the decoding which are present in the
canonical sequence;

ii) one phoneme may be confused with another; and

iii) even if the speech recognition system decodes the
speech perfectly, the free decoding may nonetheless
differ from the canonical decoding due to the
differences between conversational pronunciation
and canonical pronunciation, e.g., in
conversational speech the word "and" (whose
canonical forms are /ae/ /n/ /d/ and /ax/ /n/ /d/)

is frequently reduced to /ax/ /n/ or even /n/.

Therefore, if a large number of utterances are decoded
into their canonical forms and their free decoded forms,
then a dynamic programming method can be used to align
the two. This provides counts of what was decoded, d,
when the phoneme should, canonically, have been a p.
From these training results, the above substitution,
deletibn and insertion probabilities can be approximated

in the following way.

The probability that phoneme, d, is an insertion is given

by:



10

15

35

Id
PId|C) = — (6)

d
N,

where I, is the number of times the automatic speech
recognition system inserted phoneme d and n,2¢ is the
total number of decoded phonemes which are inserted

relative to the canonical sequence.

The probability of decoding (substituting) phoneme p as

phoneme d is given by:

C,
P(d|p,C) = -2 (7)
n,

where c4, 1is the number of times the automatic speech
recognition system decoded d when it should have been p
and n, is the number of times the automatic speech
recognition system decoded anything (including a

deletion) when it should have been p.

The probability of not decoding anything (i.e. there
being a deletion) when the phoneme p should have been

decoded is given by:

Op
P@|p.C) = —£ (8)

p



10

15

20

25

36
where O, is the number of times the automatic speech
recognition system decoded nothing when it should have

decoded p and n, is the same as above.

ALTERNATIVE EMBODIMENTS

As those skilled in the art will appreciate, the above
technique for matching one phoneme lattice with another
phoneme lattice can be applied to applications other than
data retrieval. Additionally, as those skilled in the
art will appreciate, although the system described above
has used phonemes in the phoneme and word lattice, other
phoneme-like units can be used, such as syllables or

katakana (Japanese alphabet).

As those skilled in the art will appreciate, the above
description of the dynamic programming matching and
alignment of the two phoneme lattices was given by way
of example only and various modifications can be made.
For example, whilst a raster scanning technique for
propagating the paths through the lattice points was
employed, other techniques could be employed which
progressively propagate the paths through the lattice

points.

In the above embodiment, the entries in the node table
were arranged in time-sequential order relative to the
node times of the nodes in the annotation lattice. As

those skilled in the art will appreciate, this is not



10

15

20

25

37
essential, the scores may be stored in any order so long

as the comparison unit knows or can determine the order.

In the above embodiment, a separate entry in each node
table was provided for each distinct time-point within
the annotation. As a result, any nodes in the annotation
lattice corresponding to the same time-point were only
represented by a single entry in the node table. As
those skilled in the art will appreciate, this is not
essential - separate entries in the node table may be
provided for each of the nodes in the annotation lattice.
However, combining the entries for annotation nodes
having a common time index reduces the processing burden

without affecting performance.

In the above embodiment, a node table was defined for
each of the nodes within the query lattice. As those
skilled in the art will appreciate, during the
propagation of the paths, only two node tables are
processed. Therefore, the DP lattice comparison unit may
be arranged to only store two node tables in working
memory at any time, with the other node tables being

stored in some other memory such as a hard disc.

In the above embodiment, separate node tables were
provided for each of the nodes in the query lattice. As
those skilled in the art will appreciate, the node tables

may be combined into a single node table, with each



10

15

20

25

38
element in the node table being associated with one node
in the query lattice and one node (or distinct time-

point) in the annotation lattice.

As an alternative to using node tables, a hash table
structure could be used. A hash table is a structure
that allows for almost direct access with low
computational cost. Each element in the hash table is
accessed via a hash key. 1In the present case, the key
will be formed using any query node identifier (such as
the time-mark associated with the query node) combined
with any annotation node identifier. Each element in the
hash table then contains some useful information, which
in this case corresponds to the score and any other
information which may be useful and which has to be
provided at the end of the lattice searching process.
During the propagation of the scores, the hash element
identified by the hash key for the current query node and
current annotation node is retrieved from the hash table.
If this hash element is defined as HEl, then the system
would update the score from HEl to take into account the
above-described substitution, insertions and deletions.
Next, the hash element accessed by the key formed with
the destination nodes pointed to by the appropriate qlink
and alink is retrieved. If this hash element is defined
as HE2, then the updated score from HEl is compared with
the score from HE2 and if the updated score from HE1l is

better, then the score in HE2 is replaced with the



10

15

20

25

39

updated score from HEl in the hash table.

In the above embodiment, during the path propagation, all
paths were considered and propagated from each query node
to each annotation node. In an alternative embodiment,
in order to reduce the number of paths being propagated,
a "pruning" technique may be used to stop badly scoring
paths propagating further. In this case, when beginning
the processing of a node table, the system would query
the node table to identify which alinks are active and

need to be propagated.

In the above embodiment, the DP lattice comparison unit
used a node table for each node in the query lattice.
If memory consumption is an issue for the device in which
the system is operating, then the memory for each storage
area within the node tables can be allocated on the
"fly": allocating memory for each node table entry as
they are propagated forward, and freeing the memory of
the node table entries that will no longer be propagated
(since the lattices are directed acyclic graphs). 1In
this case, at one time-point, only the table for the
"current query node" and tables for all query nodes that
can be reached from that node (via the phoneme links)
need to be allocated. As soon as the next query node is
being processed, the memory for the current query node

can then be freed.



10

15

20

25

40
In the above embodiment, when the phonemes in the query
lattice are compared with the phonemes in the annotation
lattice, the above-described confusion probabilities and
the automatic speech recognition unit’s confidence data
are combined to generate a score update using equations
(1) to (5) above. In the above embodiment, these
confusion probabilities were combined with equal
weighting to the automatic speech recognition unit
confidence probabilities. However, as those skilled in
the art will appreciate, the above-described updating may
be performed using only the above-described confusion or
confidence data. Similarly, if the two sources of
probabilities are to be combined, then they can be
combined through an appropriate weighting factor. For
example, if the confidence probability from the automatic
speech recognition unit is high, then more weighting may
be given to the confidence probabilities. Whereas if the
confidence probability from the automatic speech
recognition unit is low, then more weight may be given

to the confusion probabilities.

The inventor has also found that during the stage of
creating the lattices, penalising insertions while
allowing more deletions results in smaller lattices which
reduces the computational effort required to carry out
a search, whilst not significantly affecting the

effectiveness of the search.



10

15

20

25

41
Although not described above, in the above embodiment,
the silence phoneme (SIL) is treated as any other
phoneme, but ignored when being compared during the
dynamic programming searching operation, by propagating
the scores over the silence arc without altering its

sScore.

In the above embodiment, pictures were annotated using
the phoneme and word lattice annotation data. As those
skilled in the art will appreciate, this phoneme and word
lattice data can be used to annotate many different types
of data files. For example, this kind of annotation data
can be used in medical applications for annotating x-rays
of patients, 3D videos of, for example, NMR scans,
ultrasound scans etc. It can also be used to annotate
1D data, such as audio data. For example, the annotation
data may be used to annotate the titles or lyrics of
music stored in a music library. 1In this case, the user
can input a spoken query to try to retrieve a music title
to be played. Further, in such an embodiment, instead
of outputting the search results on a display, the
results may be output acoustically via a loudspéaker.
For example, the music titles or a part of the music may

be played to the user via a loudspeaker.

In the above embodiments, during the dynamic programming
path propagation, the updated scores from the source

table were compared with the appropriate scores in the



10

15

20

25

42
destination table and the maximum score was stored. As
those skilled in the art will appreciate, since the
purpose of the comparison technique is to generate a
score representing the similarity between the query and
the portion of the annotation, it is not essential to
compare and store the maximum of the two scores.
Instead, the two scores may simply be added together.
As long as the same summation is being performed when
comparing the query with other portions of the annotation
or with other annotations, a relative comparison of the
different scores can still be made to identify the
similarity between the query and each annotation portion

or between the query and each annotation.

In the above embodiment, when a query is compared with
a longer annotation in order to try to find one or more
locations corresponding to the query, the scores in the
node table associated with the end node in the query was
compared with a threshold value. Alternatively, the
scores in the node table associated with the end node in
the query may simply be ranked based on the scores, with
the N-best scores being used to identify the places in
the annotation most likely to correspond to the query.
These N-best scores for the current annotation can then
be returned to the control unit which can then again rank

the scores from the different annotations to identify the



10

15

20

25

43
M-best annotations most likely to contain or correspond
to the query. These M-best "hits" can then be output to
the user for the user to select the appropriate

annotation or data file.

In the above embodiments, a speech recognition system
which generates a sequence of phonemes from the input
speech signal was used. As those skilled in the art will
appreciate, the above system can be used with other types
of speech recognition systems which generate, for
example, a sequence of output words or a word lattice
which can then be decomposed into a corresponding phoneme
lattice with alternatives, in order to simulate a

recogniser which produces phoneme strings.

In the above embodiment, the insertion, deletion and
decoding (substitution) probabilities were calculated
from the confusion statistics for the speech recognition
system using a maximum likelihood estimate of the
probabilities. As those skilled in the art of statistics
will appreciate, other techniques, such as maximum
entropy techniques, can be used to estimate these

probabilities.

In the above embodiment, the database 29 and the
automatic speech recognition unit 51 were both located
within the user terminal 59. As those skilled in the art

will appreciate, this is not essential. Figure 13



10

15

20

25

44
illustrates an embodiment in which the database 29 and
the search engine 53 are located in a remote server 60
and in which the user terminal 59 accesses the database
29 via the network interface units 67 and 69 and a data
network 68 (such as the Internet). In this embodiment,
the user terminal 59 can only receive voice queries from
the microphone 7. These queries are converted into
phoneme and word data by the automatic speech recognition
unit 51. This data is then passed to the control unit
55 which controls the transmission of the data over the
data network 68 to the search engine 53 located within
the remote server 60. The search engine 53 then carries
out the search in a similar manner to the way in which
the search was performed in the above embodiment. The
results of the search are then transmitted back from the
search engine 53 to the control unit 55 via the data
network 68. The control unit 55 then considers the
search results received back from the network and
displays appropriate data on the display 57 for viewing

by the user 39.

In addition to locating the database 29 and the search
engine 53 in the remote server 60, it is also possible
to locate the automatic speech recognition unit 51 in the
remote server 60. Such an embodiment is shown in Figure
14. As shown, in this embodiment, the input voice query
from the user is passed via input line 61 to a speech

encoding unit 73 which is operable to encode the speech



10

15

20

25

45
for efficient transfer through the data network 68. The
encoded data is then passed to the control unit 55 which
transmits the data over the network 68 to the remote
server 60, where it is processed by the automatic speech
recognition unit 51. The phoneme and word data generated
by the speech recognition unit 51 for the input query is
then passed to the search engine 53 for use in searching
the database 29. The search results generated by the
search engine 53 are then passed, via the network
interface 69 and the network 68, back to the user
terminal 59. The search results received back from the
remote server are then passed via the network interface
unit 67 to the control unit 55 which analyses the results
and generates and displays appropriate data on the

display 57 for viewing by the user 39.

In a similar manner, a user terminal 59 may be provided
which only allows typed inputs from the user and which
has the search engine and the database located in the
remote server. In such an embodiment, the phonetic
transcription unit 75 may be located in the remote server

60 as well.

In the above embodiments, a dynamic programming algorithm
was used to align the query phoneme lattice with the
annotation phoneme lattice. As those skilled in the art
will appreciate, any alignment technique could be used.

For example, a naive technique could be used which



10

15

20

25

46 .
identifies all possible alignments. However, dynamic
programming is preferred because of its ease of

implementation using standard processing hardware.

In the above embodiment, the same phoneme confusion
probabilities were used for both the annotations and the
queries. As those skilled in the art will appreciate,
if different recognition systems are used to generate
these, then different phoneme confusion probabilities
should be used for the annotations and the queries.
Since these confusion probabilities depend upon the
recognition system that was used to generate the phoneme

sequences.

In the above embodiment, when either the annotation or
the query was generated from text, it was assumed that
the canonical sequence of phonemes corresponding to the
typed text was correct. This may not be the case since
this assumes that the typed word or words are not mis-
spelled or mis-typed. Therefore, in an alternative
embodiment, confusion probabilities may also be used for
typed queries and/or annotations. The confusion
probabilities used may try to codify either or both mis-
spellings and mis-typings. As those skilled in the art
will appreciate, the confusion probabilities for mis-
typings will depend upon the type of keyboard used. 1In
particular, the confusion probabilities of mis-typing a

word will depend upon the layout of the keyboard. For



10

15

20

25

47
example, if a letter "d" 1is typed then the keys
surrounding the key for the letter "d" will have high
mis-typing probabilities whereas those located further
away from the "d" key will have lower mis-typing
probabilities. As mentioned above, these mis-typing
probabilities may be used together with or replaced by
confusion probabilities for the mis-spelling of the
words. These mis-spelling probabilities may be
determined by analysing typed documents from a large
number of different users and monitoring the type of mis-
spellings which wusually occur. Such mis-spelling
probabilities may also take into account transcription
errors caused by mis-keying. In such an embodiment, the
dynamic programming constraints used should allow for
insertions and/or deletions in the typed input. For
example, the constraints illustrated in Figure 11 could

be used.

A further alternative is where the text is input via a
keyboard which assigns more than one character to each
key (such as the keyboard of a mobile phone), where the
user must repeatedly press each key to cycle through the
characters assigned to that key. In such an embodiment,
the confusion probabilities would be adjusted so that
characters assigned to the same key as the input
character would have higher mis-typing confusion
probabilities than those associated with the other keys.

This is because, as anyone who has used a mobile phone



10

15

20

48
to send a text message will appreciate, mis-typings often
occur because the key has not been pressed the correct

number of times to input the desired character.

In the above embodiments, the labels of the annotation
and the query which have been aligned and matched have
represented units of speech. As those skilled in the art
will appreciate, the above-described technique can be
used in other applications where the labels of the query
and the annotation may be confusable due to the
inaccuracies of a recognition system which generated the
sequences of features. For example, the above technique
could be used in optical character or handwriting
recognition systems or in DNA recognition systems, where
there is a likelihood that the recognition system might

mistake one label for another.

A number of embodiments and modifications have been
described above. As those skilled in the art will
appreciate, there are many other embodiments and
modifications which will be apparent to those skilled in

the art.



10

15

20

25

49

CLAIMS:

1. A lattice comparison apparatus comprising:

means for receiving first and second lattices of
labels to be compared, each lattice defining alternative
label sequences that represent a sequential signal and
each lattice comprisingaiplurality nodes each associated
with one or more labels and representing a point in the
sequential signal at which the associated label occurs;
and

means for comparing the first lattice with the
second lattice by propagating a plurality of paths, each
path representing a comparison between 1labels in the
first lattice and labels in the second lattice, and each
path having an associated accumulative value representing
the closeness of the comparison;

wherein during the path propagation, said comparing
means is operable to define, for each node in the first
lattice, a plurality of associated storage areas, each
storage area associated with a first lattice node also
being associated with a respective node in the second
lattice and being operable to store, during the path
propagation, an accumulative value representing the
closeness of the comparison between labels in the first
lattice up to the associated first lattice node and
labels in the second lattice up to the associated second
lattice node; and

wherein said comparing means is operable to use said



10

15

20

25

50

storage areas during the propagation of said paths.

2. An apparatus according to claim 1, wherein each
lattice comprises an acyclic directed graph representing
different label sequences that represent said sequential

signal.

3. An apparatus according to claim 1 or 2, wherein said
comparing means is operable to propagate said paths by
processing the nodes within the said first lattice in

sequential order.

4. An apparatus according to any preceding claim,
wherein when propagating a path from a source node in
said first lattice to a destination node in said first
lattice, said comparing means is operable to update and
to propagate accumulative values stored in the storage
areas associated with the source node to at least the

storage areas associated with the destination node.

5. An apparatus according to claim 4, wherein during the
propagation of said accumulative Values,bsaid comparing
means is operable to compare the appropriate accumulative
value in the storage area associated with the destination
node with the updated accumulative value from the storage

area associated with the source node.

6. An apparatus according to claim 5, wherein said



10

15

20

25

51

comparing means 1is operable to replace the accumulative
value in the storage area associated with the destination
node with the updated accumulative value from the storage
area associated with the source node if the updated
accumulative value is better than the accumulative value
stored in the storage area associated with the

destination node.

7. An apparatus according to any of claims 4 to 6,
wherein said comparing means is operable to update the
accumulative values stored in the storage areas
associated with the source node to take into account for
substitution of the corresponding labels in the first
lattice and the corresponding labels in the second

lattice.

8. An apparatus according to any of claims 4 to 7,
wherein said comparing means is operable to update the
accumulative values stored in the storage areas
associated with the source node to take into account the
insertion of labels in the first lattice and/or in the

second lattice.

9. An apparatus according to any of claims 4 to 8,
wherein said comparing means is operable to update the
accumulative value stored in the storage areas associated
with the source node to take into account the deletion

of labels from the first lattice and/or from the second



10

15

20

25

52

lattice.

10. An apparatus according to any of claims 4 to 9,
wherein said comparing means is operable to update the
accumulative value stored in the storage areas associated
with the source node to take into account the
substitution, insertion and deletion of labels from the
first lattice and/or second lattice and wherein the
storage area to which an updated score is propagated
depends upon whether a label is substituted, inserted or

deleted from the first lattice and/or the second lattice.

11. An apparatus according to any of claims 4 to 10,
wherein said comparing means is operable to update the
accumulative values stored in the storage areas
associated with the source node by comparing the
corresponding labels in the first lattice with the

corresponding labels in the second lattice.

12. An apparatus according to claim 11, wherein said
comparing means is operable to update said accumulative
values by using predetermined confusion data which
defines measures of confusability between the different

labels.

13. An apparatus according to any of claims 4 to 12,
wherein said first lattice is generated by a recognition

unit and includes confidence data associated with said



10

15

20

25

53

labels indicative of the confidence that said recognition
unit correctly recognised the label and wherein said
comparing means is operable to update said accumulative
values stored in the storage areas associated with the
source node wusing the confidence data for the

corresponding labels.

14. An apparatus according to claim 13, wherein both
said first and second lattices include said confidence
data and wherein said comparing means 1is operable to
update said accumulative values using the confidence data
for the respective labels from the first and second

lattices.

15. An apparatus according to any preceding claim,
wherein said first and second signals are representative

of time sequential signals.

16. An apparatus according to claim 15, wherein said
nodes within the said first and second lattices
represent the start and/or end time of a label within the

lattice.
17. An apparatus according to claim 15 or 16, wherein
said lattices are representative of speech and wherein

said labels are representative of sub-word units.

18. An apparatus according to claim 17, wherein said



10

15

20

25

54

sub-word units comprise phonemes.

19. An apparatus according to any preceding claim,
further comprising means for processing the accumulative
values stored for a node, to determine a similarity
measure representing the similarity between the first and

second lattices.

20. An apparatus according to claim 19, wherein the
second lattice represents a longer sequence than the
first lattice and wherein the processing means is
operable to process the accumulative values stored for
the node to determine if the second lattice includes one

or more portions similar to the first lattice.

21. An apparatus according to claim 20, wherein said
processing means is operable to compare the accumulative
values in the storage areas of the node to identify
values better than a predetermined threshold, to identify
said one or more portions in the second lattice which are

similar to the first lattice.

22. An apparatus according to claim 21, wherein said
processing means is operable to identify said one or more
portions by identifying the storage areas having an

accumulative value better than said threshold.

23. An apparatus according to claim 21 or 22, wherein



10

15

20

25

55

the sequence length of the first lattice is known,
wherein when said processing means identifies an
accumulative value better than said threshold, the second
lattice node associated with the identified accumulative
value represents the end of said portion corresponding
to said first lattice and wherein said processing means
is operable to estimate a beginning of the portion within
the second lattice using the known sequence length of the

first lattice.

24. An apparatus according to any of claims 19 to 23,
wherein said processing means is operable to process the
accumulative values associated with an end node of the

first lattice.

25. An apparatus according to any preceding claim,
wherein said comparing means is operable to perform a
dynamic programming alignment and comparison between the

first and second lattices.

26. An apparatus according to any preceding claim,
wherein the storage areas associated with a node in the
first lattice are stored in a node table associated with

the first lattice node.

27. An apparatus according to claim 26, wherein said
storage areas in said node tables are arranged in a

sequential order defined by the sequential order of the



10

15

20

25

56

associated nodes.

28. An apparatus for searching a database comprising a
plurality of information entries to identify information
to be retrieved therefrom, each of said plurality of
information entries having an associated annotation
lattice, the apparatus comprising:

means for receiving a query lattice representing an
input query;

a lattice comparison apparatus according to any
preceding claim for comparing the query lattice with each
annotation lattice to provide a set of comparison
results; and

means for identifying said information to be
retrieved from said database using the set of comparison

results provided by the lattice comparison apparatus.

29. An apparatus according to claim 28, wherein said
identifying means is operable to identify the information
to be retrieved from said database by identifying the

annotation lattice most similar to the query lattice.

30. An apparatus according to claim 28 or 29, wherein
said set of comparison results includes at least one
score representing the similarity between the query
lattice and each annotation lattice and wherein said
identifying means is operable to identify the N most

relevant information entries by ranking the scores within



10

15

20

25

57

said set of comparison results to identify the N-best

scores.

31. A lattice comparison method comprising:

receiving first and second lattices of labels to be
compared, each lattice defining alternative label
sequences that represent a sequential signal and each
lattice comprising a plurality nodes each associated with
one or more labels and representing a point in the
sequential signal at which the associated label occurs;
and

comparing the first lattice with the second lattice
by propagating a plurality of paths, each path
representing a comparison between labels in the first
lattice and labels in the second lattice, and each path
having an associated accumulative value representing the
closeness of the comparison;

wherein during the path propagation, said comparing
step defines, for each node in the first lattice, a
plurality of associated storage areas, each storage area
associated with a first lattice node also being
associated with a respective node in the second lattice
and being operable to store, during the path propagation,
an accumulative value representing the closeness of the
comparison between labels in the first lattice up to the
associated first lattice node and labels in the second
lattice up to the associated second lattice node; and

wherein said comparing step uses said storage areas



10

15

20

25

58

during the propagation of said paths.

32. A method according to claim 31, wherein each lattice
comprises an acyclic directed graph representing
different label sequences that represent said sequential

signal.

33. A method according to claim 31 or 32, wherein said
comparing step propagates said paths by processing the

nodes within the said first lattice in sequential order.

34. A method according to any of claims 31 to 33,
wherein when propagating a path from a source node in
said first lattice to a destination node in said first
lattice, said comparing step updates and propagates
accumulative values stored in the storage areas
associated with the source node to at least the storage

areas associated with the destination node.

35. A method according to claim 34, wherein during the
propagation of said accumulative values, said comparing
step compares the appropriate accumulative value in the
storage area associated with the destination node with
the updated accumulative value from the storage area

associated with the source node.

36. A method according to claim 35, wherein said

comparing step replaces the accumulative value in the



10

15

20

25

59

storage area associated with the destination node with
the updated accumulative value from the storage area
associated with the source node if the wupdated
accumulative value is better than the accumulative value
stored 1in the storage area associated with the

destination node.

37. A method according to any of claims 34 to 36,
wherein said comparing step updates the accumulative
values stored in the storage areas associated with the
source node to take into account for substitution of the
corresponding labels in the first 1lattice and the

corresponding labels in the second lattice.

38. A method according to any of claims 34 to 37,
wherein said comparing step updates the accumulative
values stored in the storage areas associated with the
source node to take into account the insertion of labels

in the first lattice and/or in the second lattice.

39. A method according to any of claims 34 to 38,
wherein said éomparing step updates the accumulative
value stored in the storage areas associated with the
source node to take into account the deletion of labels

from the first lattice and/or from the second lattice.

40. A method according to any of claims 34 to 39,

wherein said comparing step updates the accumulative



10

15

20

25

60

value stored in the storage areas associated with the
source node to take into account the substitution,
insertion and deletion of labels from the first lattice
and/or second lattice and wherein the storage area to
which an updated score is propagated depends upon whether
a label is substituted, inserted or deleted from the

first lattice and/or the second lattice.

41. A method according to any of claims 34 to 40,
wherein said comparing step updates the accumulative
values stored in the storage areas associated with the
Source node by comparing the corresponding labels in the
first lattice with the corresponding labels in the second

lattice.

42, A method according to claim 41, wherein said
comparing step updates said accumulative values by using
predetermined confusion data which defines measures of

confusability between the different labels.

43. A method according to any of claims 34 to 42,
wherein said first lattice is generated by a recognition
unit and includes confidence data associated with said
labels indicative of the confidence that said recognition
unit correctly recognised the label and wherein said
comparing step updates said accumulative values stored
in the storage areas associated with the source node

using the confidence data for the corresponding labels.



10

15

20

25

61

44. A method according to claim 43, wherein both said
first and second lattices include said confidence data
and wherein said comparing step updates said accumulative
values using the confidence data for the respective

labels from the first and second lattices.

45, A method according to any of claims 31 to 44,
wherein said first and second signals are representative

of time sequential signals.

46. A method according to claim 45, wherein said nodes
within the said first and second lattices represent the

start and/or end time of a label within the lattice.

47. A method according to claim 45 or 46, wherein said
lattices are representative of speech and wherein said

labels are representative of sub-word units.

48. A method according to claim 47, wherein said sub-

word units comprise phonemes.

49. A method according to any of claims 31 to 48,
further comprising the step of ©processing the
accumulative values stored for a node, to determine a
similarity measure representing the similarity between

the first and second lattices.

50. A method according to claim 49, wherein the second



10

15

20

25

62

lattice represents a longer sequence than the first
lattice and wherein the processing step processes the
accumulative values stored for the node to determine if
the second lattice includes one or more portions similar

to the first lattice.

51. A method according to claim 50, wherein said
processing step compares the accumulative values in the
storage areas of the node to identify values better than
a predetermined threshold, to identify said one or more
portions in the second lattice which are similar to the

first lattice.

52. A method according to claim 51, wherein said
processing step identifies said one or more portions by
identifying the storage areas having an accumulative

value better than said threshold.

53. A method according to claim 51 or 52, wherein the
sequence length of the first lattice is known, wherein
when said processing step identifies an accumulative
value better than said threshold, the second lattice node
associated with the identified accumulative value
represents the end of said portion corresponding to said
first lattice and wherein said processing step estimates
a beginning of the portion within the second lattice

using the known sequence length of the first lattice.



10

15

20

25

63

54. A method according to any of claims 49 to 53,
wherein said processing step processes the accumulative

values associated with an end node of the first lattice.

55. A method according to any of claims 31 to 54,
wherein said comparing step performs a dynamic
programming alignment and comparison between the first

and second lattices.

56. A method according to any of claims 31 to 55,
wherein the storage areas associated with a node in the
first lattice are stored in a node table associated with

the first lattice node.

57. A method according to claim 56, wherein said storage
areas in said node tables are arranged in a sequential
order defined by the sequential order of the associated

nodes.

58. A method of searching a database comprising a
plurality of information entries to identify information
to be retrieved therefrom, each of said plurality 6f
information entries having an associated annotation
lattice, the method comprising:

receiving a query lattice representing an input
query;

comparing the query lattice with each annotation

lattice using the method of any of claims 31 to 57 to



10

15

20

64

provide a set of comparison results; and
identifying said information to be retrieved from

said database using the set of comparison results.

59. A method according to claim 58, wherein said
identifying step identifies the information to be
retrieved from said database by identifying the

annotation lattice most similar to the query lattice.

60. A method according to claim 58 or 59, wherein said
identifying step identifies the N most relevant
information entries by identifying those information
entries having an annotation lattice most similar to the

query lattice.

61. A computer readable medium storing computer
executable instructions for causing a programmable
computer device to carry out the method of any of claims

31 to 60.

62. Computer executable instructions for causing a
programmable computer device to carry out the method of

any of claims 31 to 60.



SN The {p -
; Patent . v \%
: /
2, Ollice O[hcc £ { y.
% > -
r»/l_lb. T 1\\,\ INVESTOR IN PEOPLE
Application No: GB 0316669.1 Examiner: Ben James
Claims searched: 1-62 Date of search: 4 November 2003
Patents Act 1977 : Search Report under Section 17
Documents considered to be relevant:
Category | Relevant | Identity of document and passage or figure of particular relevance
to claims
A EP 1199707 A2 (SPEECHWORKS) Esp. paragraph [0029]
A EP 1139332 A2 (VERBALTEK) Whole doc.
A EP 1228452 A0 (CANON KK) Whole doc.
A WO001/31627 A3 (CANON KK) Esp. summary of invention.
Categories:
X  Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y  Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before the
with one or more other documents of same category. filing date of this invention.
&  Member of the same patent family E Patent document published on or after, but with priority date carlier
than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCY:

G4A

_Worldwide search of patent documents classified in the following areas of the [PC’:

GO6F

EPODOC, WPL J APIO

An Executive Agency of the Department of Trade and Industry



